Aller au contenu
AIR-DEFENSE.NET

TMor

Members
  • Compteur de contenus

    10 019
  • Inscription

  • Dernière visite

  • Jours gagnés

    9

Messages posté(e)s par TMor

  1. Remarquez le "highly swept or delta canard-wing configurations is characterized by a canard downwash which modifies the wing flowfield" .

    C 'est la raison pour laquelle le Typhoon a ses Canards tres en avant . Ca perd du "lift" , mais ca gagne durant les "High Alpha" .

    Tiens tiens... Intéressant comme lecture. Il faut vraiment grimper en AoA pour le Typhoon afin que je visualise les "canard downwash" aller sur l'aile... Et il n'a fait que du 70°...

    Qu'est-ce qu'ils y gagnent d'après toi ? Est-ce un avantage par rapport au Rafale ? :rolleyes:

    Tu dis à la fin de ton message que le Rafale a les deux (canards+LEX), mais c'est quand même pas les mêmes canards que le Typhoon, et ce que j'ai donné donne des avanages à la config Rafale, non ?

  2. est ce vrai qu un systeme d annulation active a etait teste sur un falcon

    50 je crois

    je l ai vu sur un livre RAFALE LA SUPREMATIE AERIENNE que je vous conseille

    Fais gaffe.

    Jettes ton livre, ou brûle le.

    Oublie le Falcon, et n'en parle plus jamais. Fait attention aux voitures noires qui se garent devant chez toi, et assure toi de pas être suivi. Ok ? Tu tiendras le coup ? Il vaut mieux, t'es tout seul maintenant. :?

  3. Histoire de remonter à la où on était...

    l'annulation active peux être obtenue en fabriquant une sorte de plasma leger autour de l'appareil qui arrêtera sans les réfléchirs les ondes radar

    Ah bon, t'es sûr ? Je vois pas pourquoi on cherche à stopper les ondes incidentes. On veut annuler la perception de l'écho par le récepteur du radar émettant en lui additionnant un signal décalé d'une demi-période (j'ai réussi cette fois Alexis !!! :lol: )... C'est, autant que je sache, un procédé déjà utilisé pour les sons par exemple, mais je ne sais pas précisément... :lol:

    En fait, Arka_Voltcheck, tu parles des "plasma shielding". C'est cool ça. Non ? :rolleyes:

  4. Ca TMor je l'ai digere il y a un moment. Merci quand meme. Pour ton info, cette page du topic est deja copiee et sauvee dans mon floppy.

    Ca ne change pas grand chose au but que se fixaient les inges de MBB quand ils ont decide de la position des canards pour le Typhoon.

    Merci...

    Bien sûr, ça ne change rien à l'idée des gas de MBB, mais ça me fait plaisir parce que ces textes valident parfaitement la solution Dassault. Pas la peine de faire toute l'histoire de Jacko pour faire un avion maneouvrant et agile...

  5. Show me a single military weapon where it has been proven that such a magic box exists.

    Pardon Rob ??? :lol:

    Ca te parait pas évident à toi ? C'est une affaire de bon sens, je vois pas ce que tu cherches avec ta question, c'est que de la réthorique !

    That is a huge lie. They did explode very well indeed. If there was such a magic box certainly all exocets would have been turned off.

    Bah, question ouverte : je sais que c'est le cas pour le Sheffield, c'est la poudre du propulseur du missile qui a mis le feu au bateau... Dans combien de cas ça c'est produit ?
  6. SPECTRA a-t-il la possibilité de lancé automatiquement un flare ou un chaff lorsque le danger devient pressant (détection d'un missile A/Acourte portée ou d'un SAM) ?

    Cette question en amenant une autre : SPECTRA peut-il efficacement détecter tous les types de missiles (IR, système passif, etc ...) ?

    Pour te répondre en parti, il me semble bien qu'il doit pouvoir répondre automatiquement ou proposer au pilote.

    S'il détecte automatiquement le type de missile, je ne sais pas... De quoi dispose-t'il pour cela ??? Très dur.

    C'est marrant dans beaucoup de simulateurs de vol de combat, dès qu'un missile est lancé, on connait son type. :lol:

  7. Ca c'est pas la version originale.

    Mais c'est tres tres interessant tout de meme.

    Si, c'est la version originale.

    Mais il me semble qu'il a parlé de tout ça deux fois. Moi, j'ai l'une des deux. ;)

  8. Voilà ce qu'il disait très précisément...

    I know Typhoon was not g limited during subject event and I seriously doubt this Rafale was g limited either, they would both have been on an alpha limit. To be on the (configuration and mass dependant) g limit a speed of about 400kts would be required.

    Typhoon does have an over-ride stop to give a proportion of extra g, but it will not over-ride an alpha limited condition. It is important to be aware that this g over-ride was incorporated in the design a long time before GPWS was included into the baseline design. We tested GPWS in many extreme attitudes (albeit with a false base height set for safety) and it works, it works really well.

    The utility of a g over-ride is I believe questionable in light of having GPWS. If you look at the sums the difference in recovery height (or displacement in the avoiding mid air collision case) between what max g will get you and what max g plus x% will get you is minimal. Bear in mind that this excursion comes with a significant penalty to the structural life of the airframe, inspection time etc.

    The thought that came to me after watching Rafale video was that maybe these modern "carefree" aircraft are building a feeling of invincibility amongst their pilots? Typhoon is an absolute dream to fly and once you have learnt that you can smash the stick around the box without a care for historical limits you quickly get used to it. We did seriously rediculous series of inputs during the trials - we dubbed it a careless clearance rather than a carefree one.

    Another problem these jets have is the ability to add energy very quickly, unload for a few secs and you've added 100kts, which makes a big difference to you turn circle and gate height. I think the Rafale pilot unloaded during his alignment correction just after the apex of his "loop", I believe this was his mistake.

    Carefree FCS make life great, but they cannae change the laws of physics Jim (RIP Scotty).

    Bubbles, base heights and gate heights are all there for good reason.

    ;)
  9. Au sujet du décalage, tu voulais sans doute dire un décalage d'une demi-période (et non d'une demi-seconde), qui résulterait effectivement en une superposition destructrice des ondes.

    Naturellement !!! Quel idiot je fais ! :lol:
  10. SPECTRA est un ensemble de capteurs surveillant sur 360° -électromagnétique, laser, départ missile-. Il peut détecter des menaces jusqu'à 200km à la ronde, avec une précision inférieure au degré. Il dispose d'antennes également capables de brouiller des radars grâce à de très discrets et étroits (azimut inférieur au degré également) faisceaux électromagnétiques. L'annulation active est une rumeur parue dans un article "Killer Angel" écrit par Bill Sweetman, paru en 2002. Cette rumeur a été renforcé par le fait que MBDA aurait affirmé avoir expérimenter ces techniques pour des missiles de croisière. Ce système serait capable de renvoyer à un radar détectant le Rafale une imitation de son écho, mais retardé d'une demi-seconde afin que ce radar soit aveuglé. http://www.geocities.com/CapeCanaveral/9735/rafale1.htm

  11. C'est pas off-topic, on va parler un peu d'instabilité, et de contrôl du "pitch" (incidence ? assiette ? mouvement en tangage quoi !).

    Petit plongeon dans le pourquoi et le comment des écoulements tri-dimensionels tant étudiés par Dassault-Onera... (ou pourquoi croire les théories de Fonck sur Canards/LEX)...

    Désolé, c'est en anglais, et je n'ai pas le temps de traduire ce truc. En plus, c'est très très dur à suivre, à cause du vocabulaire auquel on n'est pas tous accoutumés. Bon courage à ceux que ça intéresse.

    Ces passages ne sont que des extraits d'introductions tirés de documents différents. J'ai mis des petites références.

    Doc0 -ONERA- AIAA

    Breakdown vortices

    The development of extremely maneuverable fighter aircraft and missiles has resulted in flight regimes which involve high angles of attack, raising interest in the study of three-dimensional separated flows. The delta wing design has become the prominent configuration used by combat aircraft manufacturers worldwide such as Lockheed's F-117, Dassault's Rafale, Eurofighter, and Boeing's design for the Joint Strike Fighter. A distinguishing feature of the delta wing flow field, at moderate to high angles of attack, is the formation of several vortical structures on the leeward surface. These vortical structures result from the rolling up of the viscous flow sheet previously confined within the boundary layer attached to the leeward surface.1 The most prominent of these vortical structures, which form along the sharp leading edges of delta wings, are called leading-edge vortices. The axial velocity component in the leading edge vortex core can reach values as high as three times the freestream velocity. The vortex dynamics are influenced by several delta wing parameters which include sweep angle, leading-edge geometry, wing thickness, as well as freestream conditions and angle of attack. These leading-edge vortices produce between 30% and 60% of the total lift at high alpha. Therefore, delta wings have a significant advantage in lift forces when compared with other wing designs. However, at high alpha, these well-organized leadingedge vortices often experience a sudden disorganization, known as vortex breakdown, which reduces the lift generated.

    // Interessant, l'avantage des ailes delta face aux autres design... Les vortex de bords d'attaque sont si puissants qu'ils sont à l'origine de 30 à 60 % de la portance totale aux grands angles d'attaque. Malheureusement, à une certaine dose d'alpha, les vortex se déglinguent et la portance rechute... Quelqu'un a plus d'explications ???

    Doc1 -NASA-

    Close-coupled-canard

    Many modern aircraft, both operational and experimental, utilize canards for maneuver control and improved aerodynamic performance. In addition to providing positive pitch control, influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. Canard configurations have inherently different stability and trim characteristics from conventional tailplane configurations. However, with the capability of present-day automatic control systems, the reduced or even negative static stability of a canard configuration can lead to improved aircraft agility and maneuverability.

    Aircraft using canards as primary pitch control surfaces often require large canard deflections. For example, the X-31 aircraft has a long-coupled canard which deflects between + 20 and - 70 deg for pitch and recovery control.' For closely coupled canards, a deflected canard has a more significant effect on the canard-wing aerodynamic interaction and, consequently, the aerodynamic performance of the aircraft. The NASA X-29, SAAB Viggen, and SAAB Gripen are three examples of fully integrated close-coupled canard configurations. The X-29 has a forward swept wing and a movable close-coupled canard which is the primary pitch control surface as well as an integral component in the active control system.* The Viggen has a close-coupled fixed canard for highperformance aerodynamics, while its successor, the Gripen, utilizes movable close-coupled canards to obtain maximum lift in maneuvering, maximum lift-to-drag ratio in cruise, and even nose-down pitching moment during short-field landing roll-0ut. Proper utilization of canards in present and future aircraft requires an accurate understanding of their influence on the flow structure about the wing.

    At moderate angles of attack, for canards or wings with sharp leading edges, the flow separates at the leading edge due to the adverse pressure gradient on the leeward side. A free vortex sheet is formed which rolls up over the upper surfaces of the canard or wing. If the vortex is sufficiently strong, secondary, and in some cases, tertiary separations may result.

    The flow structure of highly swept or delta canard-wing configurations is characterized by a canard downwash which modifies the wing flowfield and an interaction between the canard and wing vortex systems. The inboard wing flowfield is often dominated by the canard downwash, and the outboard is affected by the subsequent change in wing leading-edge vortex formation and the canard-wing vortex interaction. Details of a typical coplanar canard-wing flow structure are given in Ref. 4. Deflecting the canard can drastically change the canard-wing aerodynamic interaction. For example, the stronger canard downwash and modified canard trailing-edge location of a positively deflected canard will significantly change the wing flowfield relative to that of the coplanar canard case.

    Additional flow features contributing to the complex flow structure of deflected canard configurations in the transonic regime include secondary, trailing edge, and tip vortices, as well as regions of shock-induced or other boundary-layer separations. In addition to off-surface crossflow shocks, a strong primary vortex often causes the formation of a strong secondary vortex which significantly affects the surface pressures near the canard or wing leading edge. Furthermore, trailingedge and tip vortices can interact with the leading-edge vortex as it convects downstream. If these vortices are formed on the canard, then further interaction with the wing vortex system occurs. The boundary-layer separation due to a high angle of attack, or induced by a strong recovery shock, is also influenced by the presence of these vortices.

    // Les canards "à la Rafale" ont un meilleur impact sur les performances aérodynamiques de l'avion que ceux "à la Typhoon". Tels qu'ils sont, ils servent à maximiser la portance en manoeuvre, améliorer le rapport portance/trainée en croisière, etc.

    Doc 2 -Israel Aero Institut- AIAA

    Close-coupled-canard

    It is by now well-established that higher lift coefficients can be achieved on slender wing configurations by the use of aerodynamic means that stabilize the free rolled-up vortices and/or delay vortex breakdown at high angles of attack. At increasing angles of attack, the lift due to these vortices is increasing as long as the rolled-up vortices remain coherent and stable. Such enhancement of the leading-edge vortices is obtained by the close-coupled wing-canard configuration. The canard vortices interact with the wing vortices in such a way as to stabilize the free rolled-up vortices to higher angles of attack and also delay the vortex bursting. This results in the extension of the useful range of the angles of attack enabling higher values for the maximum lift coefficients for the wing-canard configurations. Similar effects of enhancing the coherence of the free rolled-up vortices and delaying vortex breakdown is also achieved by various devices such as leadingedge extensions (LEX), "saw tooth" extensions, strakes and vortex generators, and by blowing of jets.

    The close-coupled wing-canard configuration has the additional advantage of utilizing the movable canard as an aerodynamic control surface. In this case the movable canard generates (in addition to its lift and pitching moment) strong vortices that augment the strength of the wing's rolled-up vortices, resulting in an increase of the total lift at higher angles of attack. The flowfield generated at these vortices will cause an upwash on the canard due to the wing, and a downwash on the wing due to the canard that will affect the lift forces and the pitching moments on each one of these surfaces and, therefore, the total lift and the trim and control effectiveness of the wing-canard configuration. In the present investigation we will examine the capabilities of the nonlinear vortex lattice method (NLVLM) to evaluate the aerodynamic characteristics of the wing-canard configuration which is dominated by the interactions between the canard and the wing vortices.

    It is generally assumed that the vortex flow over the slender wing with or without the canard can be predicted with relatively good accuracy by inviscid methods of analysis. It is clear that the generation process of the free vortices, which is started by the separation of the vortical shear layer from the body and/or the wing's surface (or at the sharp leading edges), is due to viscous effects. These viscous effects may be viewed as the result of the strong interaction between the viscous flow near the surfaces with the inviscid external flow. It is then assumed that once the shear layers separate from the surfaces or leave the sharp leading edges they then roll up into the known "rolled up vortices," and from then on the resulting flow is dominated by the inviscid vortical flow characteristics.

    Et encore du pitch, du pitch, et du pitch... pas seulement en plus.

    Doc3 -Northrop-

    The leading edge vortex formed by flow separation from a wing leading edge extension (LEX) or wing-body strake favorably interacts with the flow over a higher aspect ratio main wing surface typical of current fighter aircraft, enhances the maneuvering lift capability of the aircraft, and strongly affects the stability characteristics. The fluid mechanic phenomenon of leading edge vortex breakdown limits, however, the maneuver performance improvement that can be obtained. Vortex breakdown forward of the wing trailing edge results in a reduction in induced lift. In a sideslip condition, vortex bursting becomes asymmetric which can lead to lateral insrabilities and when the vortex burst points arc in close proximity to the vertical or horizontal tails, abrupt loss of directional or longitudinal stability is often experienced. The location of the vortex burst points over the wing panels is highly dependent upon factors such as LEX planform shape, wing leading edge sweep angle, and deflection of leading and trailing edge flaps.

    The phenomenon of aerodynamic asymmetries at high angles of attack, historically associated with missile aerodynamics, has received considerable interest in recent years due to trends in fighter aircraft design which feature long, slender fuselages of high fineness ratio. The strong vortex system emanating from the forebody, which is influenced by nose fineness ratio, bluntness, and cross-sectional shape, may assume an asymmetric orientation with subsequent large yawing moments at zero sideslip. The degree of directional stability which the aircraft will exhibit can also be determined by the forebody vortex system. Furthermore, current generation, highly maneuverable aircraft with hybrid wing planforms and slender forebodies are characterized by strong interactions between the forebody and the wing/LEX vortex systems.

    Bref, comme on voit en gros, les canards à la Rafale permette toujours une meilleur optimisation aéro, fournissent aussi bien les "pitching moment" que la portance nécessaire en manoeuvre, retarde les décrochages et permettent de super angle d'attaque. Qu'il arrête là, Jackonicko, avec ses théories simplissimes à deux balles comme quoi les canards à fort bras de levier sont mieux ("Simple physics !" :lol:) !!!

    Instabilité :

    To give a numerical value for this "installation effect" emanating from negative stability is impossible, but it is considered to be higher than the more straightforward and better known effects of higher trimmed lift coefficients, less induced (lift dependent) drag and reduced trim drag at supersonic speeds. The last mentioned effect is due to the more moderate positive stability in the supersonic region, as compared to the normal excessive "nose heaviness" of a subsonic stable aircraft.

    Ici, à priori, l'histoire comme quoi ça rend plus agile n'est même pas évoquée... Désolé Jacko... Dire que c'est son principal cheval de bataille.

    Canards et aile :

    The aerodynamic advantages derived from the close coupled canard configuration, foremost its good vortex flow stability up to high angles of attack (AOA), that can be translated into a very high instantaneous turn rate, and which in conjunction with pivoting canards that are automatically trimmed to give optimal lift-to-drag (L/D) ratios for all cg positions, Mach and AOA, were not technically feasible for the Viggen generation of fighters. Only full span slotted flaps on the canards were present on the Viggen, for further improvement of its already excellent Short Take Off and Landing (STOL) characteristics).

    One decisive feature in obtaining good, straight pitching moment characteristics from the type of plan-form was found to lie in the slightly aft sweep of the canard pivot. This was derived through an intensive wind tunnel effort that consisted of testing a formidable number of systematically differing plan-form shapes, both for the main wing and the front surfaces.

    In order to successfully meet the often contradictory performance requirements stipulated by the RSAF, a good balance had to be struck between the important wing geometrical parameters, such as sweep angle, thickness, aspect ratio, twist, camber and area.

    For example, a demand for high supersonic speed capability and/or low transonic buffeting levels during heavy g-loading will be eased by high wing sweep angle, but then range and manoeuvrability will be degraded accordingly. And a thin wing, good for high speed, might be a blow to rolling performance at high dynamic pressures.

    The plan-form that eventually emerged was a good balance between zero-lift, wave, and induced drag and showing a maximum L/D of 9, some 25 percent and 60 percent higher than the previous Saab fighters, the Viggen and Draken respectively. Leading edge sweep angle, actually three different angles for the main wing, is higher on the canard surface to ensure stable flow, as the up-wash there can increase the local AOA substantially.

    Voilà, autant d'arguments, écrits par des spécialistes pas vraiment fictifs, et qui déplaisent énormément à notre cher pote Jacko.

    Bref, dommage pour ceux qui lisent pas l'anglais (faut s'y mettre !!!), chez Dassault, c'est pas des pinioufs. :lol:

    Personnelement, je trouve que les théories que Fonck nous a expliqué pendant X temps, elles sont loin d'être aussi simple que beaucoup ont voulu l'entendre.

    En tout cas, l'histoire du long-moment-harm à la sauce british, parce que "simple physics", je m'en fous. :P

  12. En effet, ça serait tellement mieux si elles pouvaient être bien employées ces armées. Mais j'ai aussi écrit "ne "neutraliseront" que 100% de 100% mauvais-rien-à-rattraper (si ça existe)".

    Je vais encore avoir l'air d'un naïf, mais j'aime bien le concept du gas (ou la nana) qui désarme rien qu'en papotant.

    Mon idée, c'est qu'en fournissant une éducation saine, et tout le tralala, il y aurait moyen de voir les générations futures apprendre à faire ensemble, plutôt que se foutre sur la gu.... comme leurs parents ou grand-parents. On a bien réussi avec l'Allemagne à un moment donné. Je veux pareil pour le monde entier !!! (faut que je pense à ça pour Noël prochain). C'est une piste au pif. :rolleyes:

    Bref, s'il faut attendre 2012 et l'invasion des small greys pour voir les peuples accorder leurs violons, c'est dommage.

    A moi qu'il faut que tout le monde partage l'expérience du vol en planneur (c'est tellement cooooooooool). :rolleyes:

  13. salut pourquoi est ce si important 48° ou 50° ca change quoi svp ?

    Parce qu'il est généralement admis qu'une aile dont l'angle est moins élevé a un meilleur rapport portance sur trainée, et est donc une aile meilleure en faible vitesse.
  14. de plus les articles comme ceux si enervent plus qu'ils ne convainquent.

    Mais je ne suis pas d'accord !!!! Ca apporte des éléments de réflexion.

    kedith pourais tu nous ( m' ) expliquer enfin pourquoi tu est anti-militariste, mais cette fois pas avec des arguments " idealiste " du genre la guerre c'est pas bien donc faut pas la faire.

    La guerre, c'est le sang, la boue, les larmes, des dérapages (toujours), et pas très souvent des causes justes.

    Autrement dit, des maux inutiles pour des raisons peu convainquantes.

    Pour ne parler que des States, là-bas, la guerre est le meilleur truc pour faire tourner l'économie... Ooooh, mauvaise raison ! D'abord, ces sous enrichissent les riches, et laissent crever les pauvres. Ensuite, côté pays attaqués, c'est le bordel le plus total.

    Ya pas de gentils ni de méchants dans ce monde de m...de.

    Une guerre, le jour où ses décideurs auront cent-pour-cent de bonnes intentions et ne "neutraliseront" que 100% de 100% mauvais-rien-à-rattraper (si ça existe), j'espère que je la verrai. :x

  15. "le rafale est tellement fin que l'on peu accélérer en supersonique

    et tenir la supercroisiere pleins gaz sec, sans postcombustion ,

    s'enthousiasme thomas picot," référence Air fan (juin 2005)

    Merci tom, je ne m'en rappelais plus de ça !

    En gros : Bluewings :"le Rafale vole à mach 3"

    Francois5 v2.1 : "Chuuuut ! devoir de réserve !!!"

    :arrow: Ils étaient pas en train de nous anticiper le premier avril ces deux là ?

    Entre Bluewing qui nous dit que le Rafale peut allez dans l'espace et Francois qui fait mine d'accréditer ses propos... :lol:

×
×
  • Créer...